Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities
نویسندگان
چکیده
We introduce a solid harmonic wavelet scattering representation, invariant to rigid motion and stable to deformations, for regression and classification of 2D and 3D signals. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated at different scales. Invariant scattering coefficients are obtained by cascading such wavelet transforms with the complex modulus nonlinearity. We study an application of solid harmonic scattering invariants to the estimation of quantum molecular energies, which are also invariant to rigid motion and stable with respect to deformations. A multilinear regression over scattering invariants provides close to state of the art results over small and large databases of organic molecules.
منابع مشابه
Solid Harmonic Wavelet Scattering for Molecular Energy Regression
We introduce a solid harmonic wavelet scattering representation, which is invariant to rigid movements and stable to deformations, for regression and classification of 2D and 3D images. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated to different scales. Invariant scattering coefficients are obtained by cascading such wavelet transforms...
متن کاملDiscriminative Spherical Wavelet Features for Content-Based 3D Model Retrieval
The description of 3D shapes using features that possess descriptive power and are invariant under similarity transformations is one of the most challenging issues in contentbased 3D model retrieval. Spherical harmonics-based descriptors have been proposed for obtaining rotation invariant representations. However, spherical harmonic analysis is based on a latitude-longitude parameterization of ...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملWavelet Scattering Regression of Quantum Chemical Energies
We introduce multiscale invariant dictionaries to estimate quantum chemical energies of organic molecules, from training databases. Molecular energies are invariant to isometric atomic displacements, and are Lipschitz continuous to molecular deformations. Similarly to density functional theory (DFT), the molecule is represented by an electronic density function. A multiscale invariant dictionar...
متن کامل